Overview

Pilot Immunotherapy Trial for Recurrent Malignant Gliomas

Status:
Completed
Trial end date:
2013-06-25
Target enrollment:
Participant gender:
Summary
This human Phase I trial involves taking the patient's own tumor cells during surgical craniotomy, treating them with an investigational new drug (an antisense molecule) designed to shut down a targeted surface receptor protein, and re-implanting the cells, now encapsulated in small diffusion chambers the size of a dime in the patient's abdomen within 24 hours after the surgery. Loss of the surface receptor causes the tumor cells to die in a process called apoptosis. As the tumor cells die, they release small particles called exosomes, each full of tumor antigens. It is believed that these exosomes as well as the presence of the antisense molecule work together to activate the immune system against the tumor as they slowly diffuse out of the chamber. This combination product therefore serves as a slow-release antigen depot. Immune cells are immediately available for activation outside of the chamber because a wound was created to implant these tumor cells and a foreign body (the chamber) is present in the wound. The wound and the chamber fortify the initial immune response which eventually leads to the activation of immune system T cells that attack and eliminate the tumor. By training the immune system to recognize the tumor, the patient is also protected through immune surveillance from later tumor growth should the tumor recur. Compared to the other immunotherapy strategies, this treatment marshalls the native immune system (specifically the antigen presenting cells, or dendritic cells) rather than engineering the differentiation of these immune cells and re-injecting them. Compared to traditional treatment alternatives for tumor recurrence, including a boost of further radiation and more chemotherapy, this treatment represents potentially greater benefit with fewer risks. This combination product serves as a therapeutic vaccine with an acceptable safety profile, which activates an anti-tumor adaptive immune response resulting in radiographic tumor regression.
Phase:
Phase 1
Details
Lead Sponsor:
Sidney Kimmel Cancer Center at Thomas Jefferson University
Thomas Jefferson University