Overview

Gene Therapy Using Anti-CEA Cells to Treat Metastatic Cancer

Status:
Terminated
Trial end date:
2011-11-01
Target enrollment:
Participant gender:
Summary
Background: - Carcinoembryonic antigen (CEA) is a protein present mostly in cancer cells. - An experimental procedure developed for treating patients with cancer uses blood cells found in their tumors or bloodstream. These cells are genetically modified using the anti-CEA gene and a type of virus. The modified cells (anti-CEA cells) are grown in the laboratory and then given back to the patient to try to decrease the size of the tumors. This is called gene therapy. Objectives: - To determine whether advanced cancers that that express the CEA antigen can be treated effectively with lymphocytes (white blood cells) that have been genetically engineered to contain an anti-CEA protein. Eligibility: - Patients 18 years of age and older with metastatic cancer (cancer that has spread beyond the original site) and for whom standard treatments are not effective. - Patients' tumors express the CEA antigen. - Patients have the human leukocyte (HLA-A*0201) antigen. Design: - Workup with scans, x-rays and other tests. - Leukapheresis to obtain cells for preparing the anti-CEA cells for later infusion. - 1 week of chemotherapy to prepare the immune system for receiving the anti-CEA cells. - Infusion of anti-CEA cells, followed by interleukin-2 (IL-2) treatment. The cells are given as an infusion through a vein. IL-2 is given as a 15-minute infusion through a vein every 8 hours for a maximum of 15 doses. - 1-2 weeks of recovery from the effects of chemotherapy and IL-2. - Periodic follow-up clinic visits after hospital discharge for physical examination, review of treatment side effects, laboratory tests and scans every 1 to 6 months.
Phase:
Phase 1
Details
Lead Sponsor:
National Cancer Institute (NCI)
Treatments:
Aldesleukin